27 research outputs found

    Numerical Analysis of Active Flow Boiling Regime Management Using a Vapor-Compression Cycle Applied to Electronic Processor Cooling

    Get PDF
    As computing power continues to grow at a rapid rate, the thermal load generated from electronic devices follows. Furthermore, reduced size requirements for electronic devices have driven engineers to produce this increased computing power in smaller packaging than ever before. The combination of these two trends results in high heat flux processors that require innovative cooling techniques. Industry and academia alike have anticipated this trend and have developed several general families of solutions to cooling high-heat flux processors. This work proposes the use of flow boiling in a vapor compression cycle and a spreader to distribute the heat from a high-heat flux source to the evaporator. Specifically, the balance between cycle performance and achievable heat flux is assessed, and operating conditions where the ability of the cycle to control evaporator heat flux and simultaneously achieve a high cycle efficiency are identified. A numerical flow boiling correlation is applied and a microchannel evaporator design model is proposed. Geometric parameters and performance limitations of this technique are analyzed and both quantitative and qualitative results along with future work are presented

    Experimental Comparison of Cycle Modifications to a Multi-Stage Two-Evaporator Transcritical CO2 Refrigeration Cycle

    Get PDF
    With increasing awareness of the adverse effects of carbon emissions on the environment, researchers within the heating, ventilation, air conditioning, and refrigeration (HVAC&R) community have been pushing for lower global warming potential (GWP) and natural working fluids as well as systems that are more efficient than the higher-GWP systems they replace. One such working fluid is carbon dioxide (CO2). While CO2 has the advantages of being low-cost, non-flammable, and possessing a high volumetric heat capacity, it has a high critical pressure associated with a low critical temperature, thus often necessitating transcritical operation that requires significant compressor input power. As such, numerous cycle modifications have been proposed that enable the transcritical CO2 cycle to match, and in some cases surpass, the coefficient of performance (COP) of existing hydrofluorocarbon (HFC) cycles under the same operating conditions. This work provides an experimental comparison of four cycle architectures that utilize the same compressors and heat exchangers. This enables a meaningful comparison of these modifications, consisting of open economization with an evaporator bypass, as well as both electronic expansion valve (EXV) and ejector expansion strategies, along with a pump applied between the gas cooler outlet and the ejector motive nozzle inlet for control and increased recoverable pressure differential. Experimental parametric studies were conducted, and comparisons of architecture costs and benefits are presented. Design recommendations are provided along with future work

    Experimental and Numerical Optimization of a Variable-Geometry Ejector in a Transcritical CO2 Refrigeration Cycle

    Get PDF
    Implementation of an ejector for expansion work recovery in transcritical carbon dioxide (CO2) cycles provides an opportunity to improve the efficiency of these environmentally-friendly refrigeration systems. However, literature outlining an approach to ejector design for a given application is lacking. This paper presents a tool to design a complete ejector applied in a vapor compression cycle. In this work, the developed design tool was validated using experimentally-derived polynomials for air-conditioning conditions. Then, constant values for nozzle and mixing section efficiencies were used as inputs into design tool to broaden the analysis outside of the application boundaries of the experimentally-derived polynomials to study a transcritical CO2 system with an ejector operating in the evaporating temperature and gas cooler pressure in the range of -15 °C to 20 °C and 80 bar to 110 bar, respectively. The design tool allows for the calculation of the motive and suction nozzle throat diameters, the mixing section diameter, and the diffuser outlet diameter, as well as the lengths of each section, to output a full internal geometry of the ejector based on performance requirements. Individual component sub-models are presented within the proposed model structure. The model which forms the basis of the design tool was experimentally validated with a mean absolute error (MAE) between 3% to 4%. Additionally, the sensitivity of the ejector geometry and performance to component efficiencies, operating conditions, and component versus system optimization was investigated. The optimization and parametric studies provided novel insights into the impact of desired efficiency and operating conditions on ejector geometry, thus allowing a designer to make decisions based on the tradeoff between ejector size and performance. For example, as the diffuser length increased by 5.1 mm to obtain an efficiency increase, to obtain a further efficiency increase of the same amount would require a 17.1 mm length increase in diffuser length. Potential model improvements and other future work are also discussed

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
    corecore